Secondary ေက်ာင္းသားမ်ားအတြက္ ျပဳစုထားေသာ Euclidean Geometry Textbook ျဖစ္ပါသည္။
Geometry တစ္ခုတည္းကိုသာ ဦးစားေပးထားေသာ စာအုပ္ျဖစ္သျဖင့္ geometry သင္းခန္းစာမ်ားကို ျပည့္ျပည့္စံုစံုေလ့လာႏိုင္ပါသည္။ အထက္တန္းဆင့္ geometry အတြက္ မီွညမ္းကိုးကားႏိုင္ေသာ စာအုပ္ေကာင္းတစ္အုပ္ျဖစ္ပါသည္။ အိုလံပစ္ၿပိဳင္ပြဲ၀င္ရန္ ရည္ရြယ္ထားသူမ်ား၊ Geometry ဆိုင္ရာ ဉာဏ္စမ္းပုစာၦမ်ားကို စိတ္၀င္စားသူမ်ား သိရွိထားရန္လိုအပ္ေသာ အေျခခံသင္ခန္းစာမ်ား ျဖစ္ပါသည္။
သခၤ်ာဆရာမ်ား လက္ကိုင္ထားသင့္ေသာ စာအုပ္တစ္အုပ္ ျဖစ္ပါသည္။
Book Name : Advanced Euclidean Geometry: Excursions for Secondary Teachers and Students
Author : Alfred S. Posamentier
Content :
Chapter 1: Elementary Euclidean Geometry Revisited.
Review of Basic Concepts of Geometry.
Learning from Geometric Fallacies.
Common Nomenclature.
Chapter 2: Concurrency of Lines in a Triangle.
Introduction.
Ceva's Theorem.
Applications of Ceva's Theorem.
The Gergonne Point.
Chapter 3: Collinearity of Points.
Duality.
Menelaus's Theorem.
Applications of Menelaus's Theorem.
Desargues's Theorem.
Pascal's Theorem.
Brianchon's Theorem.
Pappus's Theorem.
The Simson Line.
Radical Axes.
Chapter 4: Some Symmetric Points in a Triangle.
Introduction.
Equiangular Point.
A Property of Equilateral Triangles.
A Minimum Distance Point.
Chapter 5: More Triangle Properties.
Introduction.
Angle Bisectors.
Stewart's Theorem.
Miquel's Theorem.
Medians.
Chapter 6: Quadrilaterals.
Centers of a Quadrilateral.
Cyclic Quadrilaterals.
Ptolemy's Theorem.
Applications of Ptolemy's Theorem.
Chapter 7: Equicircles.
Points of Tangency.
Equiradii.
Chapter 8: The Nine-Point Circle.
Introduction to the Nine-Point Circle.
Altitudes.
The Nine-Point Circle Revisited.
Chapter 9: Triangle Constructions.
Introduction.
Selected Constructions.
Chapter 10: Circle Constructions.
Introduction.
The Problem of Apollonius.
Chapter 11: The Golden Section and Fibonacci Numbers.
The Golden Ratio.
Fibonacci Numbers.
Lucas Numbers.
Fibonacci Numbers and Lucas Numbers in Geometry.
The Golden Rectangle Revisited.
The Golden Triangle.
No comments:
Post a Comment